SUBSCRIBE TODAY AND SAVE 15% | FREE SHIPPING ON ORDERS OVER $150 AUSTRALIA WIDE
June 01, 2020
How often do we hear someone say, ‘when my times up – it’s up!’ Seems pretty fatalistic to me, however, much of our society still believes that humans can only live up to about 80 years of age and it is only the extremely lucky that can make it to 100 years or more. However, it was only a couple of years ago that the National Academy of Medicine held a large event to kick off a challenge – The Challenge in Healthy Longevity – where they wanted to make living over 150 a reality.
Well, 30 years ago we would have said the same thing however, huge growth in gene-based science, bio-technology and artificial intelligence advancements has now made this goal a reality with some researchers and futurists pushing the boundaries and saying that over 200 will be possible for humans by the end of the century.
Longevity is an exciting topic and something nearly all of us want for ourselves and loved ones. But it is an extremely complex topic, so much so, that there are over 25 laboratories employing hundreds of scientists exploring the thousands of parameters that effect our cells performance and the ways we can influence our genes to cause us to live longer.
We have taken great strides in understanding our cells with their mitochondrial function and genetic pathways and identifying how they play a vital role in how long we live. The more we understand these genes and pathways, the closer we will become to developing strategies to extend our lifespan and optimise our healthspan.
Scientists searching for this elusive longevity gene have answered this question with a complex and simple explanation.
The complex answer first. Scientists have discovered hundreds of genes, that when manipulated, lead to extended lifespans. These genes have been labelled longevity-associated genes (LAGs) because when their function or expression has been modulated, it results in noticeable changes in longevity. These LAGs have a wide diversity of functions and have a high degree of connectivity and inter-connectivity. The science is showing us that these genes all work in a cooperative manner and form a ‘longevity network’.
An interesting finding about these LAGs and our longevity networks is that there seems to be ‘hubs’ located in different parts of the longevity network that control, regulate and influence all the other hundreds of genes that are responsible for age-associated conditions such as oxidative stress, chronic inflammation and cellular senescence.
The complexity comes with the time-consuming study and testing of these hundreds of genes, each associated with a different disease and all having an essential place within the longevity network. Not only are scientist studying what these individual genes do but also how they influence each other, and they also have to test and trial hundreds of substances that can inhibit or activate these genes.
Now to the simpler explanation about our longevity genes. These hubs located in the longevity network contain master or regulating genes that control huge numbers of other longevity genes. As scientists have looked deeper into these hubs, they have identified 3 groups of genes that can most accurately be labelled ‘anti-ageing genes’ and these genes are named FOXO, sirtuin and mTOR.
FOXO genes – especially FOXO3:
This gene group is so amazing that it confers immortality to the freshwater polyp HYDRA (which our company is named after).
Sirtuin genes – especially Sirt1,2,3,6:
mTOR genes – especially mTORC1:
Another exciting part of the research around these three groups of genes is that they all have common stimulators and inhibitors and that regulating one group of these genes actually improves the function of the other 2 groups of genes. That’s fantastic news for those of us developing strategies to treat and reverse the Hallmarks of Ageing.
The main nutrients found to strongly influence these three groups of genes are:
This is only the tip of the iceberg. Anti-ageing scientists are continuing to explore our bodies and will undoubtedly find other genes strongly associated with the fountain of youth. One thing is for sure, it’s unlikely we will ever discover ONE single gene that is responsible for causing us to age or to reverse the ageing process – it involves multiple genes and numerous pathways.
The best strategies we develop now and into the future need to be able to target multiple genes and their pathways to give us the best chance to beat ageing. But don’t wait for tomorrow, start influencing your longevity-associated genes and your longevity networks TODAY with scientifically validated superfoods and nutrigenomic ingredients. We all have the opportunity to have an improved healthspan as well as a longer lifespan.
Comments will be approved before showing up.
September 03, 2020
July 01, 2020
What do antioxidants, ORAC scores, free radicals, oxidative damage, reactive oxygen species (ROS) and redox all have in common? They are all involved in the process of how we age and the development of chronic diseases. But if they are so important to human health then why is so little known about them and how to prevent them from making people sick?
June 14, 2020
There is an important reason why ‘genomic instability’ takes the number one position on the list of hallmarks. It is often called the big boss of the 4 primary hallmarks. Ultimately, genomic instability influences every single parameter, process and outcome of all the other hallmarks. The blueprint (or code) printed in our genome is the information for all life and is the starting point of everything that makes us human.
Get 10% OFF your first order
Just sign-up below and we'll send you an email with your special discount code to unlock your saving.